Locking and Restarting Quadratic Eigenvalue Solvers
نویسندگان
چکیده
منابع مشابه
Locking and Restarting Quadratic Eigenvalue Solvers
This paper studies the solution of quadratic eigenvalue problems by the quadratic residual iteration method. The focus is on applications arising from nite-element simulations in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-ation of converged eigenvectors (or Schur vect...
متن کاملRegularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers
This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...
متن کاملInner iterations in eigenvalue solvers
We consider inverse iteration-based eigensolvers, which require at each step solving an “inner” linear system. We assume that this linear system is solved by some (preconditioned) Krylov subspace method. In this framework, several approaches are possible, which differ by the linear system to be solved and/or the way the preconditioner is used. This includes methods such as inexact shift-and-inv...
متن کاملDiagonalizable Quadratic Eigenvalue Problems
A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...
متن کاملThe Quadratic Eigenvalue Problem
We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2001
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s106482759935174x